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Abstract. We obtain several determinant evaluations, related to affine root
systems, which provide elliptic extensions of Weyl denominator formulas. Some
of these are new, also in the polynomial special case, while others yield new
proofs of the Macdonald identities for the seven infinite families of irreducible
reduced affine root systems.

1. Introduction

Determinants play an important role in many areas of mathematics. Often, the
solution of a particular problem in combinatorics, mathematical physics or, simply,
linear algebra, depends on the explicit computation of a determinant. Some use-
ful and efficient tools for evaluating determinants are provided in Krattenthaler’s
survey articles [K2], [K3], which also contain many explicit determinant evalua-
tions that have appeared in the literature and give references where further such
formulae can be found.

As examples of interesting determinant evaluations, we mention the Weyl de-
nominator formulas for classical root systems, which play a fundamental role in
Lie theory and related areas. For the root systems An−1, Bn, Cn and Dn, the
denominator formula may be written

det
1≤i,j≤n

(
xj−1

i

)
=

∏
1≤i<j≤n

(xj − xi), (1.1a)

det
1≤i,j≤n

(
xj−n

i − xn+1−j
i

)
=

n∏
i=1

x1−n
i (1− xi)

∏
1≤i<j≤n

(xj − xi)(1− xixj), (1.1b)
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det
1≤i,j≤n

(
xj−n−1

i − xn+1−j
i

)
=

n∏
i=1

x−n
i (1− x2

i )
∏

1≤i<j≤n

(xj − xi)(1− xixj), (1.1c)

det
1≤i,j≤n

(
xj−n

i + xn−j
i

)
= 2

n∏
i=1

x1−n
i

∏
1≤i<j≤n

(xj − xi)(1− xixj), (1.1d)

respectively.
In this article, we are interested in generalizing (1.1) to the level of elliptic

determinant evaluations. By this we mean that the matrix elements should be
defined in terms of theta functions, so that it is a priori clear that the quotient of
the two sides of the identity is an elliptic function of some natural parameters. Up
to date, according to our knowledge, very few elliptic determinant (and pfaffian)
evaluations are known, see [Fr], [FS], [H, Lem. 1], [O], [Ra2, Th. 2.10], [TV, App. B]
and [W, Th. 4.17, Lem. 5.3]. Most of these results contain elliptic extensions of
Weyl denominators, and are thus apparently related to root systems.

An elliptic extension of the Weyl denominator formula was obtained by Mac-
donald [M1], see also [D]. He introduced, and completely classified, affine root
systems. Moreover, he extended the Weyl denominator formula to the case of
reduced affine root systems. The resulting Macdonald identities were later in-
terpreted in terms of Kac–Moody algebras [Ka]. Notable special cases include
Watson’s quintuple product identity [Wa] (for the affine root system BC1) and
Winquist’s identity [Wi] (for B2).

There are seven infinite families of irreducible reduced affine root systems and
seven exceptional cases. We will only consider the infinite families, which Mac-
donald denotes A, B, B∨, C, C∨, BC and D. We will call them classical affine
root systems. They should not be confused with the classical root systems men-
tioned above. Although the corresponding Macdonald identities do give elliptic
extensions of (1.1), it is only for type C, C∨ and BC that they can immediately be
written as determinant evaluations. Nevertheless, one of our goals is to rewrite all
seven cases in determinant form, and prove them by an “identification of factors”
argument similar to the usual proof of the Vandermonde determinant (1.1a). This
new proof of the Macdonald identities is rather similar to Stanton’s elementary
proof [St], but the use of determinants makes the details more streamlined.

For each classical affine root system R, we define a corresponding notion of R
theta function. We then give a “master determinant formula”, Proposition 3.4,
which expresses a determinant of R theta function as a constant times the R Mac-
donald denominator. When the constant can be explicitly determined, we have
a genuine determinant evaluation. Such explicit instances of the master formula
include a determinant of Warnaar (see Proposition 4.1 below), new generalized
Weyl denominator formulas for all classical affine root systems (Theorem 4.4, The-
orem 4.9 and Corollaries 4.11 to 4.15) and determinant versions of the Macdonald
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identities (Proposition 6.1). Theorem 4.4 include as special cases the determi-
nants of Frobenius and Hasegawa cited above, and has a non-trivial overlap with
the determinant of Tarasov and Varchenko.

The most striking difference between our new elliptic denominator formulas
and those found by Macdonald, is the large number of free parameters in our
identities. This probably makes the results more difficult to interpret in terms
of, say, affine Lie algebras. On the other hand, the presence of free parameters
seems useful for certain applications. Indeed, special cases of our identities have
found applications to multidimensional basic and elliptic hypergeometric series
and integrals, see [GK], [KN], [Ra1], [Ra2], [R1], [R2], [RS1], [S1], [S2], [S3], [S4],
[Sp], [W], to the study of Ruijsenaars operators and related integrable systems
[H], [Ru], to combinatorics, see [K2] for an extensive list of references, as well as
to number theory [R3]. It thus seems very likely that our new results will find
similar applications.

Our paper is organized as follows. Section 2 contains preliminaries on Jacobi
theta functions. In Section 3 we introduce theta functions associated to the clas-
sical affine root systems. We then give our master formula, Proposition 3.4. In
Section 4 we obtain several elliptic determinant evaluations that can be viewed as
explicit versions of Proposition 3.4. The main results are Theorems 4.4 and 4.9
(the other determinant evaluations are corollaries of these). Section 5 features
several corollaries obtained by restricting to the polynomial special case. Finally,
in Section 6, we obtain determinant evaluations that are shown to be equivalent
to the Macdonald identities for classical affine root systems.

Acknowledgement: We thank Eric Rains for his comments on Corollary 4.10,
leading to some improvements in that part of the paper, and Vitaly Tarasov for
clarifying how to obtain Corollary 4.5 from the results of [TV], see Remark 4.6.

2. Preliminaries

Throughout this paper, we implicitly assume that all scalars are generic, so that
no denominators in our identities vanish.

The letter p will denote a fixed number such that 0 < |p| < 1. When dealing
with the root system C∨

n , we will also assume a fixed choice of square root p1/2.
The case p = 0 will be considered in Section 5.

We use the standard notation

(a)∞ = (a; p)∞ =
∞∏

j=0

(1− apj),

(a1, . . . , an)∞ = (a1, . . . , an; p)∞ = (a1; p)∞ · · · (an; p)∞.
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Then,

(xk; pk)∞ =
k−1∏
j=0

(xωj
k; p)∞, (x; p)∞ =

k−1∏
j=0

(xpj; pk)∞, (2.1)

where ωk denotes a primitive kth root of unity.
We employ “multiplicative”, rather than “additive”, notation for theta func-

tions. This corresponds to realizing the torus C/(Z+ τZ) as (C \ {0})/(z 7→ pz),
where p = e2πiτ . Thus, we take as our building block the function

θ(x) = θ(x; p) = (x, p/x; p)∞.

We will sometimes use the shorthand notation

θ(a1, . . . , an) = θ(a1) · · · θ(an),

θ(xy±) = θ(xy)θ(x/y).

The function θ(x) is holomorphic for x 6= 0 and has single zeroes precisely at
pZ. Up to an elementary factor, θ(e2πix; e2πiτ ) equals the Jacobi theta function
θ1(x|τ). We will frequently use the inversion formula

θ(1/x) = −1

x
θ(x)

and the quasi-periodicity

θ(px) = −1

x
θ(x).

By Jacobi’s triple product identity, we have the Laurent expansion

θ(x) =
1

(p)∞

∞∑
n=−∞

(−1)np(n
2)xn. (2.2)

Similarly to (2.1), we have

θ(xk; pk) =
k−1∏
j=0

θ(xωj
k; p), θ(x; p) =

k−1∏
j=0

θ(xpj; pk), (2.3)

which, when k = 2, implies

θ(x2) = θ(x,−x, p
1
2 x,−p

1
2 x). (2.4)

Since θ(x) has a single zero at x = 1, it follows that

θ(−1, p
1
2 ,−p

1
2 ) = lim

x→1

θ(x2)

θ(x)
= 2. (2.5)
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3. Theta functions on root systems

The Macdonald identities for the affine root systems An−1, Bn, B∨
n , Cn, C∨

n ,
BCn and Dn (see Corollary 6.2 below) give multiple Laurent expansions of the
Macdonald denominators

WAn−1(x) =
∏

1≤i<j≤n

xjθ(xi/xj),

WBn(x) =
n∏

i=1

θ(xi)
∏

1≤i<j≤n

x−1
i θ(xix

±
j ),

WB∨n (x) =
n∏

i=1

x−1
i θ(x2

i ; p
2)

∏
1≤i<j≤n

x−1
i θ(xix

±
j ),

WCn(x) =
n∏

i=1

x−1
i θ(x2

i )
∏

1≤i<j≤n

x−1
i θ(xix

±
j ),

WC∨n (x) =
n∏

i=1

θ(xi; p
1
2 )

∏
1≤i<j≤n

x−1
i θ(xix

±
j ),

WBCn(x) =
n∏

i=1

θ(xi)θ(px
2
i ; p

2)
∏

1≤i<j≤n

x−1
i θ(xix

±
j ),

WDn(x) =
∏

1≤i<j≤n

x−1
i θ(xix

±
j ).

For Bn, C∨
n and BCn it is natural to multiply W (x) by

∏n
i=1 x

−1/2
i , but we prefer

to avoid introducing square roots of the variables xi. We will not need anything
of Macdonald’s theory, but merely use the above list as a rule for labelling our
results. Each of our elliptic determinant evaluations expresses the Macdonald
denominator of some affine root system as a determinant.

The following definition may seem strange, since root systems are usually asso-
ciated to multivariable functions. However, it will enable us to give a very succinct
statement of Proposition 3.4. Note that, except in the case R = An−1, WR is an
R theta function of each xi. This is easy to check directly, and is also clear from
Proposition 3.4.

Definition 3.1. Let f(x) be holomorphic for x 6= 0. Then, we call f an An−1

theta function of norm t if

f(px) =
(−1)n

txn
f(x). (3.1)
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Moreover, if R denotes either Bn, B∨
n , Cn, C∨

n , BCn or Dn, we call f an R theta
function if

f(px) = − 1

pn−1x2n−1
f(x), f(1/x) = −1

x
f(x), R = Bn,

f(px) = − 1

pnx2n
f(x), f(1/x) = −f(x), R = B∨

n ,

f(px) =
1

pn+1x2n+2
f(x), f(1/x) = −f(x), R = Cn,

f(px) =
1

pn− 1
2 x2n

f(x), f(1/x) = −1

x
f(x), R = C∨

n ,

f(px) =
1

pnx2n+1
f(x), f(1/x) = −1

x
f(x), R = BCn,

f(px) =
1

pn−1x2n−2
f(x), f(1/x) = f(x), R = Dn.

These notions depend on our fixed parameter p, and in the case of C∨
n on a

choice of square root p1/2.
The following result gives useful factorizations of R theta functions.

Lemma 3.2. The function f is an An−1 theta function of norm t if and only if
there exist constants C, b1, . . . , bn such that b1 · · · bn = t and

f(x) = C θ(b1x, . . . , bnx).

For the other six cases, f is an R theta function if and only if there exist constants
C, b1, . . . , bn−1 such that

f(x) = C θ(x) θ(b1x
±, . . . , bn−1x

±), R = Bn,

f(x) = C x−1θ(x2; p2) θ(b1x
±, . . . , bn−1x

±), R = B∨
n ,

f(x) = C x−1θ(x2) θ(b1x
±, . . . , bn−1x

±), R = Cn,

f(x) = C θ(x; p
1
2 ) θ(b1x

±, . . . , bn−1x
±), R = C∨

n ,

f(x) = C θ(x)θ(px2; p2) θ(b1x
±, . . . , bn−1x

±), R = BCn,

f(x) = C θ(b1x
±, . . . , bn−1x

±), R = Dn,

where θ(x) = θ(x; p).

Proof. Up to the change of variable x 7→ e2πix, what we call an An−1 theta function
is usually called a theta function of order n. In that case, the factorization theorem
is classical, see [We, p. 45]. Nevertheless, we review the proof. The “if” part
is straight-forward, so we assume that f is an An−1 theta function. Let N be
the number of zeroes of f , counted with multiplicity, inside any period annulus
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A = {|p|r < |x| ≤ r}. It is well-known that

N =

∫

∂A

f ′(x)

f(x)

dx

2πi
.

The equality (3.1) differentiates to

f ′(x)

f(x)
− p

f ′(px)

f(px)
=

n

x
,

which gives N = n. Thus, there exist b1, . . . , bn so that the zeroes, counted
with multiplicity, are enumerated by pmbi, m ∈ Z, i = 1, . . . , n. The function
g(x) = f(x)/θ(b1x, . . . , bnx) is then analytic for x 6= 0 and satisfies g(px) = g(x),
so by Liouville’s theorem it is constant. Finally, if f has norm t, one checks that
b1 · · · bn = t.

Let us now consider the case R = Dn. Since any Dn theta function f is an A2n−3

theta function, it has 2n − 2 zeroes in each period annulus. It is easy to check
from the definition that if a is a zero, then 1/a is a zero of the same multiplicity,
and if some zero should satisfy a2 ∈ pZ, then its multiplicity is even. Thus, there
exist a1, . . . , an−1 so that the zeroes, with multiplicity, are enumerated by pma±i ,
m ∈ Z, i = 1, . . . , n − 1. As before, g(x) = f(x)/θ(a1x

±, . . . , an−1x
±) is analytic

for x 6= 0 and satisfies g(px) = g(x), so by Liouville’s theorem it is constant.
The other cases are easily deduced from the case R = Dn. For instance, assume

that f is a BCn theta function. Letting x = 1, x = 1/
√

p and x = −1/
√

p
in Definition 3.1, one finds that f vanishes at these points and thus f(pm) =
f(±√ppm) = 0 for any m ∈ Z. It follows that g(x) = f(x)/θ(x)θ(px2; p2) is
analytic for x 6= 0. It is straight-forward to check that g is a Dn theta function,
so the desired factorization follows from the case R = Dn. The remaining cases
can be treated similarly. ¤

We will also use the following result, which expresses R theta functions, when
R is not of type A, in terms of type A theta functions.

Lemma 3.3. The function f is an R theta function if and only if there exists a
function g(x), holomorphic for x 6= 0, such that

g(px) = − 1

pn−1x2n−1
g(x), f(x) = g(x)− xg(1/x), R = Bn,

g(px) = − 1

pnx2n
g(x), f(x) = g(x)− g(1/x), R = B∨

n ,

g(px) =
1

pn+1x2n+2
g(x), f(x) = g(x)− g(1/x), R = Cn,

g(px) =
1

pn− 1
2 x2n

g(x), f(x) = g(x)− xg(1/x), R = C∨
n ,
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g(px) =
1

pnx2n+1
g(x), f(x) = g(x)− xg(1/x), R = BCn,

g(px) =
1

pn−1x2n−2
g(x), f(x) = g(x) + g(1/x), R = Dn.

Proof. If f is an R theta function, one may in each case choose g = f/2. The
converse is straight-forward. ¤

A well-known example, to be used later, is the case when R = C1 and g(x) =
x−2θ(ax, bx, cx, dx), abcd = 1. Combining Lemma 3.2 and Lemma 3.3 gives g(x)−
g(1/x) = C x−1θ(x2), where C may be computed by plugging in x = a. This leads
to the identity

1

x2
θ(ax, bx, cx, dx)− x2θ(a/x, b/x, c/x, d/x)

=
1

ax
θ(ab, ac, ad, x2), abcd = 1, (3.2)

which is equivalent to Riemann’s addition formula (cf. [WW, p. 451, Example 5]).
We are now in a position to state our “master formula”.

Proposition 3.4. Let f1, . . . , fn be An−1 theta functions of norm t. Then,

det
1≤i,j≤n

(fj(xi)) = C θ(tx1 · · · xn) WAn−1(x) (3.3a)

for some constant C. Moreover, if R denotes either Bn, B∨
n , Cn, C∨

n , BCn or Dn

and f1, . . . , fn are R theta functions, we have

det
1≤i,j≤n

(fj(xi)) = C WR(x) (3.3b)

for some constant C.

Proof. Consider first the case of (3.3a). For fixed i = 1, . . . , n, let L(xi) and R(xi)
denote the left-hand and right-hand sides, viewed as functions of xi. It is straight-
forward to verify that both L and R are An−1 theta functions of norm t. Thus,
f = L/R satisfies f(px) = f(x), so if we can prove that f is analytic, it follows
from Liouville’s theorem that it is constant. Up to multiplication with pZ, the
zeroes of R are situated at xi = xj, j 6= i and at xi = 1/tx1 · · · x̂i · · · xn. For
generic values of xj, j 6= i, they are all single zeroes, so it is enough to show that
L vanishes at these points. In the first case, xi = xj, j 6= i, this is clear since the
ith and jth rows in the determinant are equal. It then follows from Lemma 3.2
that L vanishes also at xi = 1/tx1 · · · x̂i · · · xn.

In the other cases, the same proof works with obvious modifications. It is
actually enough to go through this for R = Dn, since the remaining five cases can
then be deduced using Lemma 3.2. ¤
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We remark that in the case R = Dn, one may well attribute Proposition 3.4 to
Warnaar. Although he only states it in a special case, see Proposition 4.1 below,
his proof extends verbatim to the general case.

4. Elliptic determinant evaluations

We do not consider Proposition 3.4 a determinant evaluation, since we do not
have a simple formula for the constant C. From our perspective, the main use of
Proposition 3.4 is to systematize our knowledge of elliptic determinant evaluations,
as corresponding to various special cases when this constant can be computed.

4.1. Warnaar’s type D determinant. For comparison and completeness, we
first review the following determinant evaluation due to Warnaar [W, Lemma 5.3].
Warnaar used it to obtain a summation formula for a multidimensional elliptic
hypergeometric series; further related applications may be found in [R1], [R2],
[RS1], [Sp]. In the limit p → 0 it reduces to Krattenthaler’s determinant [K1,
Lemma 34], which has been a powerful tool in the enumeration of, and computation
of generating functions for, restricted families of plane partitions and tableaux, see
the discussion of Lemmas 3–5 and Theorems 26–31 in [K2].

Warnaar’s determinant corresponds to the case of Proposition 3.4 when R = Dn

and

fj(x) = Pj(x)
n∏

k=j+1

θ(akx
±),

with Pj a Dj theta function. Then, for xi = ai, the matrix in (3.3b) is triangular,
so that its determinant, and thus the constant C, can be computed. This leads to
the following result.

Proposition 4.1 ((Warnaar) A D type determinant evaluation). Let x1, . . . , xn

and a1, . . . , an be indeterminates. For each j = 1, . . . , n, let Pj be a Dj theta
function. Then there holds

det
1≤i,j≤n

(
Pj(xi)

n∏

k=j+1

θ(akx
±
i )

)
=

n∏
i=1

Pi(ai)
∏

1≤i<j≤n

ajx
−1
j θ(xjx

±
i ).

The parameter a1 is introduced for convenience, its value being immaterial since
P1 is constant. Similar remarks can be made about many of our results below.

Corollary 4.2 (A D type Cauchy determinant). Let x1, . . . , xn and a1, . . . , an be
indeterminates. Then there holds

det
1≤i,j≤n

(
1

θ(ajx
±
i )

)
=

∏
1≤i<j≤n ajx

−1
j θ(xjx

±
i , aia

±
j )∏n

i,j=1 θ(ajx
±
i )

.
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Proof. Let Pj(x) =
∏j−1

k=1 θ(akx
±) in Proposition 4.1, pull

∏n
k=1 θ(akx

±
i ) out of the

ith row of the determinant (i = 1, . . . , n) and divide both sides by
∏n

i,j=1 θ(ajx
±
i ).
¤

Corollary 4.2 was used by Rains [Ra1], [Ra2] to obtain transformations and
recurrences for multiple elliptic hypergeometric integrals. Perhaps surprisingly, it
is equivalent to the classical Cauchy determinant

det
1≤i,j≤n

(
1

ui + vj

)
=

∏
1≤i<j≤n(uj − ui)(vj − vi)∏n

i,j=1(ui + vj)
,

see [Ra2].
Another simple consequence of Proposition 4.1 is the following determinant

evaluation, which is included here for possible future reference. Two related de-
terminant evaluations, corresponding to the type A root system and restricted
to the polynomial case, were applied in [S1] and [S3] to obtain multidimensional
matrix inversions that played a major role in the derivation of new summation
formulae for multidimensional basic hypergeometric series, see Remark 5.4. Even-
tually, Corollary 4.3 may have similar applications in the elliptic setting.

Corollary 4.3 (A D type determinant evaluation). Let x1, . . . , xn, a1, . . . , an+1

and b be indeterminates. For each j = 1, . . . , n + 1, let Pj be a Dj theta function.
Then there holds

Pn+1(b) det
1≤i,j≤n

(
Pj(xi)

n+1∏

k=j+1

θ(akx
±
i )− Pn+1(xi)

Pn+1(b)
Pj(b)

n+1∏

k=j+1

θ(akb
±)

)

=
n+1∏
i=1

Pi(ai)
∏

1≤i<j≤n+1

ajx
−1
j θ(xjx

±
i ),

where xn+1 = b.

Proof. We proceed similarly as in the proof of Lemma A.1 of [S1]. In par-

ticular, we utilize det

(
M η
ξ γ

)
= γ det

(
M − γ−1ηξ

)
(which is a special case

of a formula due to Sylvester [Sy]) applied to M =
(
Pj(xi)

∏n+1
k=j+1 θ(akx

±
i )

)
,

ξ =
(
Pj(b)

∏n+1
k=j+1 θ(akb

±)
)
, η = (Pn+1(xi)), γ = Pn+1(b), and then apply Propo-

sition 4.1. ¤

4.2. An A type determinant. If one tries to imitate the proof of Proposition 4.1,
using Proposition 3.4 for Bn, B∨

n , Cn, C∨
n or BCn, rather than Dn, one will find

results that are equivalent to Proposition 4.1 in view of Lemma 3.2. However,
for the root system An−1 one obtains the following new elliptic extension of the
Vandermonde determinant (1.1a), see Remark 5.15.
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Theorem 4.4 (An A type determinant evaluation). Let x1, . . . , xn, a1, . . . , an,
and t be indeterminates. For each j = 1, . . . , n, let Pj be an Aj−1 theta function
of norm ta1 · · · aj. Then there holds

det
1≤i,j≤n

(
Pj(xi)

n∏

k=j+1

θ(akxi)

)

=
θ(ta1 · · · anx1 · · ·xn)

θ(t)

n∏
i=1

Pi(1/ai)
∏

1≤i<j≤n

ajxj θ(xi/xj). (4.1)

Proof. By the An−1 case of Proposition 3.4, with t replaced by ta1 · · · an, (4.1)
holds up to a factor independent of xi. To compute this constant one may let
xi = 1/ai, in which case the matrix on the left-hand side is triangular. ¤

By Lemma 3.2, we may without loss of generality assume that

Pj(x) = θ(b1jx) · · · θ(bjjx), (4.2)

where b1j · · · bjj = ta1 · · · aj. On the right-hand side of (4.1), we then have
P1(1/a1)/θ(t) = 1. After replacing t by t/a1 · · · an, this gives the following equi-
valent form of Theorem 4.4:

det
1≤i,j≤n

(
j∏

k=1

θ(bkjxi)
n∏

k=j+1

θ(akxi)

)

= θ(tx1 . . . xn)
n∏

i=2

i∏

k=1

θ(bki/ai)
∏

1≤i<j≤n

ajxj θ(xi/xj),

where

b1j · · · bjjaj+1 · · · an = t, j = 1, . . . , n.

If we make the further specialization

(b1j, . . . , bjj) = (c1, . . . , cj−1, bj)

and then interchange aj and cj, we recover the following determinant evalua-
tion due to Tarasov and Varchenko. In a special case, it was also obtained by
Hasegawa [H, Lemma 1], who used it to compute the trace of elliptic L-operators,
leading to the elliptic Ruijsenaars(–Macdonald) commuting difference operators,
see [Ru].

Corollary 4.5 (Tarasov and Varchenko). Let x1, . . . , xn, a1, . . . , an−1, b1, . . . , bn,
c2, . . . , cn and t be indeterminates, such that

a1 · · · aj−1bjcj+1 · · · cn = t, j = 1, . . . , n.

Then there holds
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det
1≤i,j≤n

(
j−1∏

k=1

θ(akxi) · θ(bjxi)
n∏

k=j+1

θ(ckxi)

)

= θ(tx1 · · · xn)
n∏

i=2

θ(bi/ci)
∏

1≤i<j≤n

cjxj θ(xi/xj, ai/cj).

Note that
∏n

i=2 θ(bi/ci) =
∏n−1

i=1 θ(bi/ai).

Remark 4.6. Corollary 4.5 appears rather implicitly in [TV, Appendix B], as a
special case of a much more general result. More precisely, it is the case ` = 1 of
an infinite family of evaluations for the determinants

det
l,m∈Zn

`

(Jl(u B m)), (4.3)

where rows and columns are labelled by the simplex

Zn
` = {l = (l1, . . . , ln); li ≥ 0,

∑
li = `}.

When ` = 1 the simplex can be identified with {1, . . . , n} and one gets a “usual”
determinant. For an explanation of the other symbols in (4.3), the reader is kindly
referred to [TV].

If we let aj = cj in Corollary 4.5 and replace t by ta1 · · · an, so that bj = taj, we
recover the following determinant evaluation due to Frobenius [Fr]. This identity
has found applications to Ruijsenaars operators [Ru], to multidimensional ellip-
tic hypergeometric series and integrals [KN], [Ra1] and to number theory [R3].
It is closely related to the denominator formula for certain affine superalgebras,
see [R3]. For a generalization to higher genus Riemann surfaces, see [F, Corol-
lary 2.19].

Corollary 4.7 ((Frobenius) An A type Cauchy determinant evaluation). Let
x1, . . . , xn, a1, . . . , an and t be indeterminates. Then there holds

det
1≤i,j≤n

(
θ(tajxi)

θ(t, ajxi)

)
=

θ(ta1 · · · anx1 · · ·xn)

θ(t)

∏
1≤i<j≤n ajxj θ(ai/aj, xi/xj)∏n

i,j=1 θ(ajxi)
.

Finally, the following result is included here for similar reasons as Corollary 4.3.

Corollary 4.8 (An A type determinant evaluation). Let x1, . . . , xn, a1, . . . , an+1

and b be indeterminates. For each j = 1, . . . , n+1, let Pj be an Aj−1 theta function
of norm ta1 · · · aj. Then there holds

Pn+1(b) det
1≤i,j≤n

(
Pj(xi)

n+1∏

k=j+1

θ(akxi)− Pn+1(xi)

Pn+1(b)
Pj(b)

n+1∏

k=j+1

θ(akb)

)
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=
θ(tba1 · · · an+1x1 · · · xn)

θ(t)

n+1∏
i=1

Pi(1/ai)
∏

1≤i<j≤n+1

ajxj θ(xi/xj), (4.4)

where xn+1 = b.

Proof. Proceed as in the proof of Corollary 4.3 but apply Theorem 4.4 instead of
Proposition 4.1. ¤
4.3. A C type determinant. The following identity, associated to the affine
root system of type C, provides a new elliptic extension of the Weyl denominator
formulas (1.1b), (1.1c) and (1.1d), see Remark 5.15.

Theorem 4.9 (A C type determinant evaluation). Let x1, . . . , xn, a1, . . . , an, and
c1, . . . , cn+2 be indeterminates. For each j = 1, . . . , n, let Pj be an Aj−1 theta
function of norm (c1 · · · cn+2aj+1 · · · an)−1. Then there holds

det
1≤i,j≤n

(
x−n−1

i

n+2∏

k=1

θ(ckxi) Pj(xi)
n∏

k=j+1

θ(akxi)

−xn+1
i

n+2∏

k=1

θ(ckx
−1
i ) Pj(x

−1
i )

n∏

k=j+1

θ(akx
−1
i )

)

=
a1 · · · an

θ(c1 · · · cn+2a1 · · · an)

n∏
i=1

Pi(1/ai)

×
∏

1≤i<j≤n+2

θ(cicj)
n∏

i=1

x−1
i θ(x2

i )
∏

1≤i<j≤n

ajx
−1
i θ(xix

±
j ). (4.5)

Equivalently, factoring Pj as in (4.2), we have

det
1≤i,j≤n

(
x−n−1

i

n+2∏

k=1

θ(ckxi)

j∏

k=1

θ(bkjxi)
n∏

k=j+1

θ(akxi)

−xn+1
i

n+2∏

k=1

θ(ckx
−1
i )

j∏

k=1

θ(bkjx
−1
i )

n∏

k=j+1

θ(akx
−1
i )

)

= − 1

c1 · · · cn+2

n∏
i=2

i∏

k=1

θ(bki/ai)

×
∏

1≤i<j≤n+2

θ(cicj)
n∏

i=1

x−1
i θ(x2

i )
∏

1≤i<j≤n

ajx
−1
i θ(xix

±
j ),

where
b1j · · · bjjaj+1 · · · anc1 · · · cn+2 = 1, j = 1, . . . , n.
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We will give two proofs of Theorem 4.9.

First proof of Theorem 4.9. Using Lemma 3.3, one checks that the determinant is
of the form (3.3b), with R = Cn. Proposition 3.4 then guarantees that the quotient
of the two sides of (4.5) is a constant, so it is enough to verify the equality for
some fixed values of xi. We choose xi = ci, so that the second term in each matrix
element vanishes. The factor

∏n+2
k=1 θ(ckxi) may then be pulled out from the ith

row of the determinant and cancelled, using

n∏
i=1

n+2∏

k=1

θ(ckxi) =
1

θ(cn+1cn+2)

∏
1≤i<j≤n+2

θ(cicj)
n∏

i=1

θ(x2
i )

∏
1≤i<j≤n

θ(xixj).

Introducing the parameter t = 1/c1 · · · cn+2a1 · · · an, we note that

θ(cn+1cn+2)

θ(c1 · · · cn+2a1 · · · an)
=

θ(ta1 · · · anx1 · · ·xn)

θ(t)

n∏
i=1

1

aixi

.

Thus, we are reduced to proving

det
1≤i,j≤n

(
Pj(xi)

n∏

k=j+1

θ(akxi)

)

=
θ(ta1 · · · anx1 · · · xn)

θ(t)

n∏
i=1

Pi(1/ai)
∏

1≤i<j≤n

ajxj θ(xi/xj),

where Pj is an Aj−1 theta function of norm ta1 · · · aj, and where xj may again be
viewed as free variables. This is exactly Theorem 4.4. ¤

Let Ri denote the reflection operator Rif(xi) = f(x−1
i ). Then, due to linearity

of the determinant, the left-hand side of (4.5) may be written

n∏
i=1

(1−Ri)
n∏

i=1

(
x−n−1

i

n+2∏

k=1

θ(ckxi)

)
det

1≤i,j≤n

(
Pj(xi)

n∏

k=j+1

θ(akxi)

)

=
1

θ(1/c1 · · · cn+2a1 · · · an)

n∏
i=1

Pi(1/ai)
n∏

i=1

(1−Ri) θ

(
x1 · · · xn

c1 · · · cn+2

)

×
n∏

i=1

(
x−n−1

i

n+2∏

k=1

θ(ckxi)

) ∏
1≤i<j≤n

ajxj θ(xi/xj), (4.6)

where we used Theorem 4.4 to compute the determinant. Comparing this with
the right-hand side of (4.5) gives the following equivalent form of Theorem 4.9.

Corollary 4.10. In the notation above,
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n∏
i=1

(1−Ri) θ

(
x1 · · · xn

c1 · · · cn+2

) n∏
i=1

(
x−n−1

i

n+2∏
j=1

θ(cjxi)

) ∏
1≤i<j≤n

xj θ(xi/xj)

= − 1

c1 · · · cn+2

∏
1≤i<j≤n+2

θ(cicj)
n∏

i=1

x−1
i θ(x2

i )
∏

1≤i<j≤n

x−1
i θ(xix

±
j ).

Corollary 4.10 resembles some identities in the work of Rains [Ra1]. It can be
used to give an alternative proof of his type I BCn integral, originally conjectured
by van Diejen and Spiridonov [DS] (Rains, personal communication). It would be
interesting to know if Corollary 4.10 can be obtained by specializing a multidimen-
sional elliptic hypergeometric summation theorem on 0 ≤ ki ≤ mi (i = 1, . . . , n)
to the case mi ≡ 1.

One consequence of (4.6) is that if we can compute the left-hand side for some
special choice of aj and Pj, we can compute it in general, since aj and Pj appear
trivially on the right-hand side. This observation can be used to give an alternative
proof of Theorem 4.9, based on the type D Cauchy determinant of Corollary 4.2.

Second proof of Theorem 4.9. We consider the special case when aj = c−1
j , 1 ≤

j ≤ n, and

Pj(x) = θ(tc−1
j x)

j−1∏

k=1

θ(c−1
k x),

where tcn+1cn+2 = 1. Then, the left-hand side of (4.5) can be written

det
1≤i,j≤n

((
n∏

k=1, k 6=j

c−1
k θ(ckx

±
i )

)
(1−Ri) x−2

i θ(cn+1xi, cn+2xi, cjxi, tc
−1
j xi)

)
.

By (3.2) and Corollary 4.2, this equals

det
1≤i,j≤n

((
n∏

k=1, k 6=j

c−1
k θ(ckx

±
i )

)
x−1

i c−1
j θ(x2

i , t, cjcn+1, cjcn+2)

)

=
θ(t)n

cn
1 · · · cn

n

n∏
i=1

x−1
i θ(x2

i , cicn+1, cicn+2)
n∏

i,j=1

θ(cjx
±
i ) det

1≤i,j≤n

(
1

θ(cjx
±
i )

)

=
θ(t)n

cn
1 · · · cn

n

n∏
i=1

x−1
i θ(x2

i , cicn+1, cicn+2)
∏

1≤i<j≤n

cjx
−1
j θ(xjx

±
i , cic

±
j ),

which agrees with the right-hand side of (4.5). As was remarked above, the general
case now follows using (4.6). ¤
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4.4. Determinants of type B, B∨, C∨, BC and D. If c2 ∈ pZ, then θ(cx)
and θ(c/x) are equal up to a trivial factor. Thus, if one of the parameters cj

in Theorem 4.9 is of this form, then the factor
∏n

i=1 θ(cjxi) may be pulled out
from the determinant. Up to the trivial scaling cj 7→ pcj, there are four choices:

cj ∈ {1,−1, p
1
2 ,−p

1
2}. By (2.4), θ(cjxi) then cancels against a part of the factor

θ(x2
i ) on the right-hand side. Making various specializations of this sort, the Cn

Macdonald denominator in (4.5) can be reduced to the Macdonald denominator
for Bn, B∨

n , C∨
n , BCn and Dn.

As a first example, we let cn+2 = −1 in Theorem 4.9. Then,

θ(x2
i )

θ(cn+2xi)
= θ(xi)θ(px

2
i ; p

2).

This gives the following determinant of type BC.

Corollary 4.11 (A BC type determinant evaluation). Let x1, . . . , xn, a1, . . . , an,
and c1, . . . , cn+1 be indeterminates. For each j = 1, . . . , n, let Pj be an Aj−1 theta
function of norm −(c1 · · · cn+1aj+1 · · · an)−1. Then there holds

det
1≤i,j≤n

(
x−n

i

n+1∏

k=1

θ(ckxi) Pj(xi)
n∏

k=j+1

θ(akxi)

−xn+1
i

n+1∏

k=1

θ(ckx
−1
i ) Pj(x

−1
i )

n∏

k=j+1

θ(akx
−1
i )

)

=
a1 · · · an

θ(−c1 · · · cn+1a1 · · · an)

n∏
i=1

Pi(1/ai)

×
n+1∏
i=1

θ(−ci)
∏

1≤i<j≤n+1

θ(cicj)
n∏

i=1

θ(xi)θ(px
2
i ; p

2)
∏

1≤i<j≤n

ajx
−1
i θ(xix

±
j ).

If we let cn+1 = −p
1
2 in Corollary 4.11, we obtain the following determinant of

type C∨.

Corollary 4.12 (A C∨ type determinant evaluation). Let x1, . . . , xn, a1, . . . , an,
and c1, . . . , cn be indeterminates. For each j = 1, . . . , n, let Pj be an Aj−1 theta

function of norm (p
1
2 c1 · · · cnaj+1 · · · an)−1. Then there holds

det
1≤i,j≤n

(
x−n

i

n∏

k=1

θ(ckxi) Pj(xi)
n∏

k=j+1

θ(akxi)

−xn+1
i

n∏

k=1

θ(ckx
−1
i ) Pj(x

−1
i )

n∏

k=j+1

θ(akx
−1
i )

)
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=
a1 · · · anθ(p

1
2 )

θ(p
1
2 c1 · · · cna1 · · · an)

n∏
i=1

Pi(1/ai)

×
n∏

i=1

θ(−ci, p
1
2 )

∏
1≤i<j≤n

θ(cicj)
n∏

i=1

θ(xi; p
1
2 )

∏
1≤i<j≤n

ajx
−1
i θ(xix

±
j ).

If we let cn+1 = −p
1
2 and cn+2 = p

1
2 in Theorem 4.9, and replace c1 by c1/p for

convenience, we obtain the following determinant of type B∨.

Corollary 4.13 (A B∨ type determinant evaluation). Let x1, . . . , xn, a1, . . . , an,
and c1, . . . , cn be indeterminates. For each j = 1, . . . , n, let Pj be an Aj−1 theta
function of norm −(c1 · · · cnaj+1 · · · an)−1. Then there holds

det
1≤i,j≤n

(
x−n

i

n∏

k=1

θ(ckxi) Pj(xi)
n∏

k=j+1

θ(akxi)

−xn
i

n∏

k=1

θ(ckx
−1
i ) Pj(x

−1
i )

n∏

k=j+1

θ(akx
−1
i )

)

=
a1 · · · anc1 · · · cnθ(−1)

θ(−c1 · · · cna1 · · · an)

n∏
i=1

Pi(1/ai)

×
n∏

i=1

θ(pc2
i ; p

2)
∏

1≤i<j≤n

θ(cicj)
n∏

i=1

x−1
i θ(x2

i ; p
2)

∏
1≤i<j≤n

ajx
−1
i θ(xix

±
j ).

If we let cn = −1 in Corollary 4.13 we obtain, using also (2.5), the following
determinant of type B.

Corollary 4.14 (A B type determinant evaluation). Let x1, . . . , xn, a1, . . . , an,
and c1, . . . , cn−1 be indeterminates. For each j = 1, . . . , n, let Pj be an Aj−1 theta
function of norm (c1 · · · cn−1aj+1 · · · an)−1. Then there holds

det
1≤i,j≤n

(
x1−n

i

n−1∏

k=1

θ(ckxi) Pj(xi)
n∏

k=j+1

θ(akxi)

−xn
i

n−1∏

k=1

θ(ckx
−1
i ) Pj(x

−1
i )

n∏

k=j+1

θ(akx
−1
i )

)

= − 2a1 · · · anc1 · · · cn−1

θ(c1 · · · cn−1a1 · · · an)

n∏
i=1

Pi(1/ai)

×
n−1∏
i=1

θ(−ci)θ(pc
2
i ; p

2)
∏

1≤i<j≤n−1

θ(cicj)
n∏

i=1

θ(xi)
∏

1≤i<j≤n

ajx
−1
i θ(xix

±
j ).
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Finally, assuming n ≥ 2, we let cn−1 = 1 in Corollary 4.14. Again using (2.5),
we obtain following type D determinant.

Corollary 4.15 (A D type determinant evaluation). Let x1, . . . , xn, a1, . . . , an,
and c1, . . . , cn−2 be indeterminates. For each j = 1, . . . , n, let Pj be an Aj−1 theta
function of norm (c1 · · · cn−2aj+1 · · · an)−1. Then, for n ≥ 2, there holds

det
1≤i,j≤n

(
x1−n

i

n−2∏

k=1

θ(ckxi) Pj(xi)
n∏

k=j+1

θ(akxi)

+xn−1
i

n−2∏

k=1

θ(ckx
−1
i ) Pj(x

−1
i )

n∏

k=j+1

θ(akx
−1
i )

)

= − 4a1 · · · anc1 · · · cn−2

θ(c1 · · · cn−2a1 · · · an)

n∏
i=1

Pi(1/ai)
∏

1≤i≤j≤n−2

θ(cicj)
∏

1≤i<j≤n

ajx
−1
i θ(xix

±
j ).

5. Some polynomial determinant evaluations

In this Section we consider the polynomial special case, p = 0, of the elliptic
determinant evaluations in Section 4. The resulting identities involve the Weyl
denominator of classical (non-affine) root systems, cf. (1.1).

We must first interpret the term “An−1 theta function” in the case p = 0. One
way is to rewrite Definition 3.1 in terms of the Laurent coefficients of f(x) =∑

j ajx
j. Namely, f is an An−1 theta function of norm t if and only if

aj+n = (−1)ntpjaj.

When p = 0 this means that aj = 0 unless 0 ≤ j ≤ n and that an = (−1)nta0.
Thus, we obtain precisely the space of polynomials of degree n and norm t, where
the norm of a0 + a1x + · · · + anx

n is defined as (−1)nan/a0. Equivalently, the
polynomial C(1− b1x) · · · (1− bnx) has norm b1 · · · bn. Thus, we obtain the same
result by formally letting p = 0 in Lemma 3.2. With this interpretation of the
term An−1 theta function, Theorems 4.4 and 4.9 remain valid when p = 0.

5.1. Determinants of type A. We first give the case p = 0 of Theorem 4.4.

Corollary 5.1 (An A type determinant evaluation). Let x1, . . . , xn, a1, . . . , an,
and t be indeterminates. For each j = 1, . . . , n, let Pj be a polynomial of degree j
and norm ta1 · · · aj. Then there holds

det
1≤i,j≤n

(
Pj(xi)

n∏

k=j+1

(1− akxi)

)

=
1− ta1 · · · anx1 · · ·xn

1− t

n∏
i=1

Pi(1/ai)
∏

1≤i<j≤n

aj(xj − xi).
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It is easy to prove Corollary 5.1 directly by a standard “identification of factors”
argument.

It is possible to remove the restriction on the norm of the polynomials Pj through
a limit transition, decreasing their degree by one. Such limits do not make sense in
the elliptic case (p 6= 0). This leads to the following determinant evaluation due to
Krattenthaler [K1, Lemma 35], who obtained it as a limit case of [K1, Lemma 34],
see the discussion of Proposition 4.1 above.

Corollary 5.2 ((Krattenthaler) An A type determinant evaluation). Let x1, . . . , xn

and a1, . . . , an be indeterminates. For each j = 1, . . . , n, let Pj−1 be a polynomial
of degree at most j − 1. Then there holds

det
1≤i,j≤n

(
Pj−1(xi)

n∏

k=j+1

(1− akxi)

)
=

n∏
i=1

Pi−1(1/ai)
∏

1≤i<j≤n

aj(xj − xi).

Proof. In Corollary 5.1, write Pj(x) = (1−tbjx)P̃j−1(x), let t → 0 and then relabel

P̃j−1 7→ Pj−1. ¤

We also note the following consequence of Corollary 4.8.

Corollary 5.3 (An A type determinant evaluation). Let x1, . . . , xn and b be in-
determinates. For each j = 1, . . . , n, let Pj−1(x) be a polynomial in x of degree at
most j − 1 with constant term 1, and let Q(x) = (1 − y1x) · · · (1 − yn+1x). Then
there holds

Q(b) det
1≤i,j≤n

(
xn+1−j

i Pj−1(xi)− bn+1−jPj−1(b)
Q(xi)

Q(b)

)

= (1− bx1 . . . xny1 · · · yn+1)
n∏

i=1

(xi − b)
∏

1≤i<j≤n

(xi − xj). (5.1)

Proof. In Corollary 4.8, let p = 0 and assume, as a matter of normalization, that
the polynomials Pj have constant term 1. Write t = sn+1, ai = ci/s,

Pj(x) = (1− sn+1−jdjx)P̃j−1(x), j = 1, . . . , n,

Pn+1(x) = (1− y1x) · · · (1− yn+1x).

Then, P̃j−1 has norm c1 · · · cj/dj and Pn+1 norm y1 · · · yn+1 = c1 · · · cn+1, which
are in particular independent of s. Dividing both sides of (4.4) by

∏
1≤i<j≤n+1

(−aj),

letting s → 0 and finally relabelling P̃j−1 7→ Pj−1, Pn+1 7→ Q, we obtain the
desired result. ¤
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Remark 5.4. Note that the right-hand side of (5.1) is independent of Pj−1. The
special case Pj−1(x) = 1, for j = 1, . . . , n, is Lemma A.1 of [S1], which was needed
in order to obtain an An matrix inversion that played a crucial role in the derivation
of multiple basic hypergeometric series identities. A slight generalization of [S1,
Lemma A.1] was given in [S3, Lemma A.1].

5.2. Determinants of type B, C, and D. Next, we turn to the p = 0 case of
Theorem 4.9.

Corollary 5.5 (A C type determinant evaluation). Let x1, . . . , xn, a1, . . . , an, and
c1, . . . , cn+2 be indeterminates. For each j = 1, . . . , n, let Pj be a polynomial of
degree j with norm (c1 · · · cn+2aj+1 · · · an)−1. Then there holds

det
1≤i,j≤n

(
x−n−1

i

n+2∏

k=1

(1− ckxi) Pj(xi)
n∏

k=j+1

(1− akxi)

−xn+1
i

n+2∏

k=1

(1− ckx
−1
i ) Pj(x

−1
i )

n∏

k=j+1

(1− akx
−1
i )

)

=
a1 · · · an

1− c1 · · · cn+2a1 · · · an

n∏
i=1

Pi(1/ai)

×
∏

1≤i<j≤n+2

(1− cicj)
n∏

i=1

x−n
i (1− x2

i )
∏

1≤i<j≤n

aj(xj − xi)(1− xixj).

If we let cn+2 = −1 in Corollary 5.5 or, equivalently, p = 0 in Corollary 4.11,
we obtain the following determinant of type B.

Corollary 5.6 (A B type determinant evaluation). Let x1, . . . , xn, a1, . . . , an, and
c1, . . . , cn+1 be indeterminates. For each j = 1, . . . , n, let Pj be a polynomial of
degree j with norm −(c1 · · · cn+1aj+1 · · · an)−1. Then there holds

det
1≤i,j≤n

(
x−n

i

n+1∏

k=1

(1− ckxi) Pj(xi)
n∏

k=j+1

(1− akxi)

−xn+1
i

n+1∏

k=1

(1− ckx
−1
i ) Pj(x

−1
i )

n∏

k=j+1

(1− akx
−1
i )

)

=
a1 · · · an

1 + c1 · · · cn+1a1 · · · an

n∏
i=1

Pi(1/ai)
∏

1≤i<j≤n+1

(1− cicj)
n+1∏
i=1

(1 + ci)

×
n∏

i=1

x1−n
i (1− xi)

∏
1≤i<j≤n

aj(xj − xi)(1− xixj).
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If we let cn+1 = 1 in Corollary 5.6, the factor
∏n

i=1(1 − xi) may be cancelled.
This gives the following determinant of type D.

Corollary 5.7 (A D type determinant evaluation). Let x1, . . . , xn, a1, . . . , an,
and c1, . . . , cn be indeterminates. For each j = 1, . . . , n, let Pj be a polynomial of
degree j with norm −(c1 · · · cnaj+1 · · · an)−1. Then there holds

det
1≤i,j≤n

(
x−n

i

n∏

k=1

(1− ckxi) Pj(xi)
n∏

k=j+1

(1− akxi)

+xn
i

n∏

k=1

(1− ckx
−1
i ) Pj(x

−1
i )

n∏

k=j+1

(1− akx
−1
i )

)

=
2 a1 · · · an

1 + c1 · · · cna1 · · · an

n∏
i=1

Pi(1/ai)

×
∏

1≤i≤j≤n

(1− cicj)
n∏

i=1

x1−n
i

∏
1≤i<j≤n

aj(xj − xi)(1− xixj).

Similarly as when deriving Corollary 5.2 from Corollary 5.1, we may remove the
restriction on the norm of Pj in Corollaries 5.5, 5.6 and 5.7 by a limit transition,
through which their degree is lowered by one.

Corollary 5.8 (A C type determinant evaluation). Let x1, . . . , xn, a1, . . . , an, and
c1, . . . , cn+1 be indeterminates. For each j = 1, . . . , n, let Pj−1 be a polynomial of
degree at most j − 1. Then there holds

det
1≤i,j≤n

(
x−n

i

n+1∏

k=1

(1− ckxi) Pj−1(xi)
n∏

k=j+1

(1− akxi)

−xn
i

n+1∏

k=1

(1− ckx
−1
i ) Pj−1(x

−1
i )

n∏

k=j+1

(1− akx
−1
i )

)

=
n∏

i=1

Pi−1(1/ai)
∏

1≤i<j≤n+1

(1− cicj)

×
n∏

i=1

x−n
i (1− x2

i )
∏

1≤i<j≤n

aj(xj − xi)(1− xixj).

Proof. In Corollary 5.5, write Pj(x) = (x+bjcn+2)P̃j−1(x), let cn+2 → 0 and relabel

P̃j−1 7→ Pj−1. ¤
Corollary 5.9 (A B type determinant evaluation). Let x1, . . . , xn, a1, . . . , an, and
c1, . . . , cn be indeterminates. For each j = 1, . . . , n, let Pj−1 be a polynomial of
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degree at most j − 1. Then there holds

det
1≤i,j≤n

(
x1−n

i

n∏

k=1

(1− ckxi) Pj−1(xi)
n∏

k=j+1

(1− akxi)

−xn
i

n∏

k=1

(1− ckx
−1
i ) Pj−1(x

−1
i )

n∏

k=j+1

(1− akx
−1
i )

)

=
n∏

i=1

Pi−1(1/ai)
∏

1≤i<j≤n

(1− cicj)
n∏

i=1

(1 + ci)

×
n∏

i=1

x1−n
i (1− xi)

∏
1≤i<j≤n

aj(xj − xi)(1− xixj).

Proof. Let cn+1 = −1 in Corollary 5.8 and divide by
∏n

i=1(1 + x−1
i ). ¤

Corollary 5.10 (A D type determinant evaluation). Let x1, . . . , xn, a1, . . . , an,
and c1, . . . , cn−1 be indeterminates. For each j = 1, . . . , n, let Pj−1 be a polynomial
of degree at most j − 1. Then there holds

det
1≤i,j≤n

(
x1−n

i

n−1∏

k=1

(1− ckxi) Pj−1(xi)
n∏

k=j+1

(1− akxi)

+xn−1
i

n−1∏

k=1

(1− ckx
−1
i ) Pj−1(x

−1
i )

n∏

k=j+1

(1− akx
−1
i )

)

= 2
n∏

i=1

Pi−1(1/ai)
∏

1≤i≤j≤n−1

(1− cicj)
n∏

i=1

x1−n
i

∏
1≤i<j≤n

aj(xj − xi)(1− xixj).

Proof. Let cn = 1 in Corollary 5.9 and divide by
∏n

i=1(1− xi). ¤
Next, we give some further specializations of our determinant evaluations, which

are closer to the classical Weyl denominator formulas.

Corollary 5.11 (A C type determinant evaluation). Let x1, . . . , xn, and c1, . . . , cn+1

be indeterminates. For each j = 1, . . . , n, let Pj−1 be a polynomial of degree at
most j − 1. Then there holds

det
1≤i,j≤n

(
x−j

i

n+1∏

k=1

(1− ckxi) Pj−1(xi)− xj
i

n+1∏

k=1

(1− ckx
−1
i ) Pj−1(x

−1
i )

)

=
n∏

i=1

Pi−1(0)
∏

1≤i<j≤n+1

(1− cicj)
n∏

i=1

x−n
i (1− x2

i )
∏

1≤i<j≤n

(xi − xj)(1− xixj).
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Proof. In Corollary 5.8, divide both sides of the identity by
∏

1≤i<j≤n(−aj), and
then let aj →∞, successively for j = 2, . . . , n. ¤
Remark 5.12. The special case Pj−1(x) = 1, for j = 1, . . . , n, is Lemma A.11 of
[S1], needed in order to obtain a Cn matrix inversion (which was later applied in
[S2]).

Corollary 5.13 (A B type determinant evaluation). Let x1, . . . , xn and c1, . . . , cn

be indeterminates. For each j = 1, . . . , n, let Pj−1 be a polynomial of degree at
most j − 1. Then there holds

det
1≤i,j≤n

(
x1−j

i

n∏

k=1

(1− ckxi) Pj−1(xi)− xj
i

n∏

k=1

(1− ckx
−1
i ) Pj−1(x

−1
i )

)

=
n∏

i=1

Pi−1(0)
∏

1≤i<j≤n

(1−cicj)
n∏

i=1

(1+ci)
n∏

i=1

x1−n
i (1−xi)

∏
1≤i<j≤n

(xi−xj)(1−xixj).

Proof. Let cn+1 = −1 in Corollary 5.11 and divide by
∏n

i=1(1 + x−1
i ). ¤

Corollary 5.14 (A D type determinant evaluation). Let x1, . . . , xn and c1, . . . , cn−1

be indeterminates. For each j = 1, . . . , n, let Pj−1 be a polynomial of degree at
most j − 1. Then there holds

det
1≤i,j≤n

(
x1−j

i

n−1∏

k=1

(1− ckxi) Pj−1(xi) + xj−1
i

n−1∏

k=1

(1− ckx
−1
i ) Pj−1(x

−1
i )

)

= 2
n∏

i=1

Pi−1(0)
∏

1≤i≤j≤n−1

(1− cicj)
n∏

i=1

x1−n
i

∏
1≤i<j≤n

(xi − xj)(1− xixj).

Proof. Let cn = 1 in Corollary 5.13 and divide by
∏n

i=1(1− xi). ¤
Remark 5.15. If we let cj = 0 and Pj(x) = 1 for all j, Corollaries 5.11, 5.13 and 5.14
reduce, up to reversing the order of the columns, to the classical Weyl denominator
formulas (1.1c), (1.1b) and (1.1d), respectively. Similarly, Corollary 5.1 contains
(1.1a) as a limit case. Thus, Theorems 4.4 and 4.9 give elliptic extensions of the
Weyl denominator formulas for the classical root systems.

6. The Macdonald identities

In Section 4, we have focused on the left-hand sides of (3.3), trying to find
as general families of R theta functions as possible, such that the constant C
can be determined. We will now focus on the right-hand sides, trying to find a
particularly simple expression for WR as a determinant. More precisely, we want
the functions fj to have known explicit Laurent expansions, so that the multiple
Laurent expansion of WR can be read off from (3.3).
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Starting with the case of type A, we observe that the function

fm(x) = xmθ((−1)n−1tpmxn; pn), (6.1)

with m an integer, is an An−1 theta function of norm t. Moreover, its Laurent
expansion is known from (2.2). Thus, we are led to consider determinants of the
form

det
1≤i,j≤n

(
fmj

(xi)
)
,

with mj integers, hoping that the constant

C =
det1≤i,j≤n

(
fmj

(xi)
)

θ(tx1 · · · xn) WAn−1(x)

can be evaluated.
To compute this constant, we specialize the xi to nth roots of unity, since the

theta functions may then be pulled out from the determinant. To avoid zeroes
in the denominator, the xi should be distinct, so we assume xi = ωi−1, with ω
a primitive nth root of unity. By the Vandermonde determinant (1.1a), we then
have

det
1≤i,j≤n

(
fmj

(ωi−1)
)

=
n∏

j=1

θ((−1)n−1tpmj ; pn)
∏

1≤i<j≤n

(ωmj − ωmi).

To obtain a non-trivial result, this should be non-zero, so the mi should be equi-
distributed modulo n. Thus, we assume mi = i− 1. In that case, by (2.3),

n∏
j=1

θ((−1)n−1tpmj ; pn) = θ((−1)n−1t) = θ(tx1 · · · xn)

∣∣∣∣
xi=ωi−1

,

which gives

det
1≤i,j≤n

(
xj−1

i θ((−1)n−1tpj−1xn
i ; pn)

)
=

∏
1≤i<j≤n

ωj−1 − ωi−1

ωj−1θ(ωi−j)
WAn−1(x).

By (2.1), the constant simplifies as

∏
1≤i<j≤n

ωj−1 − ωi−1

ωj−1θ(ωi−j)
=

∏
1≤i<j≤n

1

(pωj−i, pωi−j)∞

= (p)n
∞

n∏
i,j=1

1

(pωj−i)∞
= (p)n

∞

n∏

k=1

1

(pωk)n∞
=

(p; p)n
∞

(pn; pn)n∞
.

Thus, we arrive at the An−1 case of Proposition 6.1 below.
For the remaining root systems, we consider the case of Proposition 3.4 when

the theta functions are constructed using Lemma 3.3, with the corresponding
functions g of the form (6.1). By similar arguments as for An−1, one is led to the
following determinants, one for each root system.
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Proposition 6.1. The following determinant evaluations hold:

det
1≤i,j≤n

(
xj−1

i θ((−1)n−1pj−1txn
i ; pn)

)
=

(p; p)n
∞

(pn; pn)n∞
θ(tx1 · · · xn) WAn−1(x),

det
1≤i,j≤n

(
xj−n

i θ(pj−1x2n−1
i ; p2n−1)− xn+1−j

i θ(pj−1x1−2n
i ; p2n−1)

)

=
2(p; p)n

∞
(p2n−1; p2n−1)n∞

WBn(x),

det
1≤i,j≤n

(
xj−n−1

i θ(pj−1x2n
i ; p2n)− xn+1−j

i θ(pj−1x−2n
i ; p2n)

)

=
2(p2; p2)∞(p; p)n−1

∞
(p2n; p2n)n∞

WB∨n (x),

det
1≤i,j≤n

(
xj−n−1

i θ(−pjx2n+2
i ; p2n+2)− xn+1−j

i θ(−pjx−2n−2
i ; p2n+2)

)

=
(p; p)n

∞
(p2n+2; p2n+2)n∞

WCn(x),

det
1≤i,j≤n

(
xj−n

i θ(−pj− 1
2 x2n

i ; p2n)− xn+1−j
i θ(−pj− 1

2 x−2n
i ; p2n)

)

=
(p

1
2 ; p

1
2 )∞(p; p)n−1

∞
(p2n; p2n)n∞

WC∨n (x),

det
1≤i,j≤n

(
xj−n

i θ(−pjx2n+1
i ; p2n+1)− xn+1−j

i θ(−pjx−2n−1
i ; p2n+1)

)

=
(p; p)n

∞
(p2n+1; p2n+1)n∞

WBCn(x),

det
1≤i,j≤n

(
xj−n

i θ(−pj−1x2n−2
i ; p2n−2) + xn−j

i θ(−pj−1x2−2n
i ; p2n−2)

)

=
4(p; p)n

∞
(p2n−2; p2n−2)n∞

WDn(x), n ≥ 2.

To complete the proof of Proposition 6.1, all that remains is to verify the identi-
ties for some fixed values of xi. We have already done this for An−1. In general, we
proceed exactly as in [St]. Namely, letting ωk denote a primitive kth root of unity,
we specialize xi as xi = ω2i−1

4n−2 for R = Bn, xi = ω2i−1
4n for R = B∨

n , xi = ωi
2n+2

for R = Cn, xi = ωi
2n for R = C∨

n , xi = ωi
2n+1 for R = BCn and xi = ωi−1

2n−2 for
R = Dn. Under these specializations, the theta functions can be pulled out from
the determinants, which are then computed by the Weyl denominator formulas
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(1.1b) (for Bn, C∨
n and BCn), (1.1c) (for B∨

n and Cn) and (1.1d) (for Dn). If we
let QR denote the quotient of the determinant and the expression WR, this gives

QBn =

∏n
j=1 θ(−pj−1; p2n−1)

∏n
j=1(−pω

±(j−n)
2n−1 )∞

∏
1≤i<j≤n(pωj−i

2n−1, pω
i−j
2n−1, pω

i+j−1
2n−1 , pω1−i−j

2n−1 )∞
,

QB∨n =

∏n
j=1 θ(−pj−1; p2n)

∏n
j=1(p

2ω
±(2j−1)
2n ; p2)∞

∏
1≤i<j≤n(pωj−i

2n , pωi−j
2n , pωi+j−1

2n , pω1−i−j
2n )∞

,

QCn =

∏n
j=1 θ(−pj; p2n+2)

∏n
j=1(pω

±2j
2n+2)∞

∏
1≤i<j≤n(pωj−i

2n+2, pω
i−j
2n+2, pω

i+j
2n+2, pω

−i−j
2n+2)∞

,

QC∨n =

∏n
j=1 θ(−pj− 1

2 ; p2n)
∏n

j=1(p
1
2 ω±j

2n ; p
1
2 )∞

∏
1≤i<j≤n(pωj−i

2n , pωi−j
2n , pωi+j

2n , pω−i−j
2n )∞

,

QBCn =

∏n
j=1 θ(−pj; p2n+1)

∏n
j=1(pω

±j
2n+1)∞(pω±2j

2n+1; p
2)∞

∏
1≤i<j≤n(pωj−i

2n+1, pω
i−j
2n+1, pω

i+j
2n+1, pω

−i−j
2n+1)∞

,

QDn =
2
∏n

j=1 θ(−pj−1; p2n−2)
∏

1≤i<j≤n(pωj−i
2n−2, pω

i−j
2n−2, pω

i+j−2
2n−2 , pω2−i−j

2n−2 )∞
.

It remains to simplify these expressions into the form given in Proposition 6.1.
We indicate a way to organize the computations for R = Bn; the other cases can
be treated similarly. We factor QBn as F1/F2F3, where

F1 =
n∏

j=1

(−pj−1; p2n−1)∞(−p2n−j; p2n−1)∞,

F2 =
n∏

j=1

(−pωj−n
2n−1)∞(−pωn−j

2n−1)∞,

F3 =
∏

1≤i<j≤n

(pωj−i
2n−1, pω

i−j
2n−1, pω

i+j−1
2n−1 , pω1−i−j

2n−1 )∞.

In F1, we make the change of variables j 7→ 2n + 1− j in the second factor and
use (2.1) to obtain

F1 =
2n∏

j=1

(−pj−1; p2n−1)∞ = 2(−p; p)∞(−p2n−1; p2n−1)∞.

Similarly, in F2 we change j 7→ 2n− j in the second factor, obtaining

F2 =
n∏

j=1

(−pωj−n
2n−1)∞

2n−1∏
j=n

(−pωj−n
2n−1)∞ = (−p; p)∞(−p2n−1; p2n−1)∞.
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Finally, in F3 we rewrite the first two factors as

1

(p)n∞

n∏
i,j=1

(pωj−i
2n−1)∞.

Making the change of variables i 7→ 2n− i, this equals

1

(p)n∞

2n−1∏
i=n

n∏
j=1

(pωi+j−1
2n−1 )∞. (6.2)

In the fourth factor in F3, we change (i, j) 7→ (n− i, n + 1− j), which gives
∏

1≤i<j≤n

(pω1−i−j
2n−1 )∞ =

∏
1≤j≤i≤n−1

(pωi+j−1
2n−1 )∞.

Thus, the third and fourth factor can be combined into

n−1∏
i=1

n∏
j=1

(pωj+i−1
2n−1 )∞,

which, together with (6.2), gives

F3 =
1

(p)n∞

n∏
j=1

2n−1∏
i=1

(pωj+i−1
2n−1 )∞ =

1

(p)n∞

n∏
j=1

(p2n−1; p2n−1)∞ =
(p2n−1; p2n−1)n

∞
(p; p)n∞

.

In conclusion, this shows that

QBn =
2(p; p)n

∞
(p2n−1; p2n−1)n∞

,

in agreement with Proposition 6.1.
The determinant evaluations in Proposition 6.1 imply the following multiple

Laurent expansions. We give two versions of each identity, the second one being
obtained from the first by an application of one of the classical Weyl denominator
formulas (1.1). To verify that these identities agree with Macdonald’s, the easiest
way is to take the second version, replace p by q, mi by −mi and xi by x−1

i , and
then compare with how the Macdonald identities are written in [St]. (Equation
(3.16) in [St] should read c(q) = 1/(q)n

∞, not c(q) = q/(q)n
∞.)

Corollary 6.2. The following identities hold:

(p; p)n−1
∞ WAn−1(x) =

∑

m1,...,mn∈Z
m1+···+mn=0

∑
σ∈Sn

sgn(σ)
n∏

i=1

x
nmi+σ(i)−1
i pn(mi

2 )+(σ(i)−1)mi

=
∑

m1,...,mn∈Z
m1+···+mn=0

n∏
i=1

xnmi
i pn(mi

2 )
∏

1≤i<j≤n

(xjp
mj − xip

mi)
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(p; p)n
∞ WBn(x) =

∑

m1,...,mn∈Z
m1+···+mn≡0 (2)

∑
σ∈Sn

sgn(σ)
n∏

i=1

x
(2n−1)mi

i p(2n−1)(mi
2 )+(n−1)mi

× (
(xip

mi)σ(i)−n − (xip
mi)n+1−σ(i)

)

=
∑

m1,...,mn∈Z
m1+···+mn≡0 (2)

n∏
i=1

x
(2n−1)mi+1−n
i p(2n−1)(mi

2 )

×
n∏

i=1

(1− xip
mi)

∏
1≤i<j≤n

(xjp
mj − xip

mi)(1− xixjp
mi+mj),

(p2; p2)∞(p; p)n−1
∞ WB∨n (x) =

∑

m1,...,mn∈Z
m1+···+mn≡0 (2)

∑
σ∈Sn

sgn(σ)
n∏

i=1

x2nmi
i p2n(mi

2 )+nmi

× (
(xip

mi)σ(i)−n−1 − (xip
mi)n+1−σ(i)

)

=
∑

m1,...,mn∈Z
m1+···+mn≡0 (2)

n∏
i=1

x
n(2mi−1)
i p2n(mi

2 )

×
n∏

i=1

(1− x2
i p

2mi)
∏

1≤i<j≤n

(xjp
mj − xip

mi)(1− xixjp
mi+mj),

(p; p)n
∞ WCn(x) =

∑

m1,...,mn∈Z

∑
σ∈Sn

sgn(σ)
n∏

i=1

x
(2n+2)mi

i p(2n+2)(mi
2 )+(n+1)mi

× (
(xip

mi)σ(i)−n−1 − (xip
mi)n+1−σ(i)

)

=
∑

m1,...,mn∈Z

n∏
i=1

x
(2n+2)mi−n
i p(2n+2)(mi

2 )+mi

×
n∏

i=1

(1− x2
i p

2mi)
∏

1≤i<j≤n

(xjp
mj − xip

mi)(1− xixjp
mi+mj),

(p
1
2 ; p

1
2 )∞(p; p)n−1

∞ WC∨n (x) =
∑

m1,...,mn∈Z

∑
σ∈Sn

sgn(σ)
n∏

i=1

x2nmi
i p2n(mi

2 )+(n− 1
2
)mi

× (
(xip

mi)σ(i)−n − (xip
mi)n+1−σ(i)

)
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=
∑

m1,...,mn∈Z

n∏
i=1

x2nmi+1−n
i p2n(mi

2 )+ 1
2
mi

×
n∏

i=1

(1− xip
mi)

∏
1≤i<j≤n

(xjp
mj − xip

mi)(1− xixjp
mi+mj),

(p; p)n
∞ WBCn(x) =

∑

m1,...,mn∈Z

∑
σ∈Sn

sgn(σ)
n∏

i=1

x
(2n+1)mi

i p(2n+1)(mi
2 )+nmi

× (
(xip

mi)σ(i)−n − (xip
mi)n+1−σ(i)

)

=
∑

m1,...,mn∈Z

n∏
i=1

x
(2n+1)mi+1−n
i p(2n+1)(mi

2 )+mi

×
n∏

i=1

(1− xip
mi)

∏
1≤i<j≤n

(xjp
mj − xip

mi)(1− xixjp
mi+mj),

(p; p)n
∞ WDn(x) =

1

2

∑

m1,...,mn∈Z
m1+···+mn≡0 (2)

∑
σ∈Sn

sgn(σ)
n∏

i=1

x
(2n−2)mi

i p(2n−2)(mi
2 )+(n−1)mi

× (
(xip

mi)σ(i)−n + (xip
mi)n−σ(i)

)

=
∑

m1,...,mn∈Z
m1+···+mn≡0 (2)

n∏
i=1

x
(n−1)(2mi−1)
i p(2n−2)(mi

2 )

×
∏

1≤i<j≤n

(xjp
mj − xip

mi)(1− xixjp
mi+mj), n ≥ 2.

Proof. We start from the determinant evaluations in Proposition 6.1. In the cases
when there are two theta functions in each matrix elements (i.e. R 6= An−1), we
apply θ(x; pN) = θ(pN/x; pN) to the second one. We then expand the left-hand
sides using (2.2). For Cn, C∨

n and BCn, this leads immediately to the desired
expansions.

For An−1, expanding also the factor θ(tx1 · · ·xn), we obtain

∞∑
m1,...,mn=−∞

∑
σ∈Sn

sgn(σ)
n∏

i=1

(−1)nmipn(mi
2 )+(σ(i)−1)mitmix

nmi+σ(i)−1
i

= (p)n−1
∞ WAn−1(x)

∞∑
N=−∞

(−1)Np(N
2 )(tx1 · · · xn)N .
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Viewing this as a Laurent series in t, taking the constant term gives the desired
result. (Picking out any other Laurent coefficient gives an equivalent identity.)

For Bn, B∨
n and Dn, we obtain series with the right terms but different range

of summation. More precisely, we find that

2X =
∑

m1,...,mn∈Z
f(m1, . . . , mn),

where the identity we wish to prove is

X =
∑

m1,...,mn∈Z
m1+···+mn≡0 (2)

(−1)m1+···+mnf(m1, . . . , mn)

in the cases Bn and B∨
n , and

X =
∑

m1,...,mn∈Z
m1+···+mn≡0 (2)

f(m1, . . . ,mn)

in the case of Dn. In any case, it remains to show that
∑

m1,...,mn∈Z
m1+···+mn≡0 (2)

f(m1, . . . , mn) =
∑

m1,...,mn∈Z
m1+···+mn≡1 (2)

f(m1, . . . , mn).

To see this, we fix σ and restrict attention to the index mi, where i = σ−1(1). Then,
we may write f(m1, . . . ,mn) = C(g(mi) + g(mi + 1)), where C is independent of
mi and

g(m) = (−1)mp(2n−1)(m
2 )x

(2n−1)m+1−n
i , R = Bn,

g(m) = (−1)mp2n(m
2 )x

n(2m−1)
i , R = B∨

n ,

g(m) = p(2n−2)(m
2 )x

(n−1)(2m−1)
i , R = Dn.

This observation completes the proof. ¤
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[Fr] F. G. Frobenius, Über die elliptischen Funktionen zweiter Art, J. Reine Angew. Math. 93

(1882), 53–68.
[FS] F. G. Frobenius and L. Stickelberger, Zur Theorie der elliptischen Functionen, J. Reine

Angew. Math. 83 (1877), 175–179.



ELLIPTIC DETERMINANT EVALUATIONS AND MACDONALD IDENTITIES 31

[GK] R. A. Gustafson and C. Krattenthaler, Determinant evaluations and U(n) extensions of
Heine’s 2φ1-transformations, in: Special functions, q-series and related topics, M. E. H. Is-
mail, D. R. Masson and M. Rahman (eds.), Amer. Math. Soc., Providence, 1997, pp. 83–
90.

[H] K. Hasegawa, Ruijsenaars’ commuting difference operators as commuting transfer matri-
ces, Commun. Math. Phys. 187 (1997), 289–325.

[Ka] V. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cam-
bridge, 1990.

[KN] Y. Kajihara and M. Noumi, Multiple elliptic hypergeometric series. An approach from the
Cauchy determinant, Indag. Math. (N.S.) 14 (2003), 395–421.

[K1] C. Krattenthaler, The major counting of nonintersecting lattice paths and generating
functions for tableaux, Mem. Amer. Math. Soc. 115 (1995), no. 552.

[K2] C. Krattenthaler, Advanced determinant calculus, Sémin. Lothar. Comb. 42 (1999), B42q.
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and Göteborg University, SE-412 96 Göteborg, Sweden
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